Q3-1
Latvian English (Latvia)

Water and Objects (10 pt)

In this problem, we consider phenomena caused by the interaction between water and objects, related to surface tension. Part A treats motion, while Parts B and C consider static situations.
If necessary, you can use the fact that if a function $y(x)$ satisfies the differential equation $y^{\prime \prime}(x)=a y(x)$ (a is a positive constant), then its general solution is $y(x)=A e^{\sqrt{a} x}+B e^{-\sqrt{a} x}$, where A and B are arbitrary constants.

Part A. Merger of water drops (2.0 points)

As shown in Fig.1, we consider two stationary, spherical water drops on the surface of a superhydrophobic material, meaning that a very strong repulsive force exists between the material and water.

Initially, two neighbouring, identical spherical water drops are placed on the surface. These two drops then merge after touching each other and form a larger spherical water drop, which suddenly jumps up.
A. 1 The radius a of both water drops before the merger is $100 \mu \mathrm{~m}$. The density of
2.0pt water ρ is $1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. The surface tension γ is $7.27 \times 10^{-2} \mathrm{~J} / \mathrm{m}^{2}$. A fraction k of the difference between the surface energy before and after the merge, ΔE, is transformed into the kinetic energy of the ejected water drop. Then, determine the initial jump-up velocity, v, of the merged water drop to two significant figures under the following assumptions:

- $k=0.06$
- Before and after the merge, the total volume of water is conserved.

Fig. 1: Merging of two water drops and jump of the merged water drop.

Part B. A vertically placed board (4.5 points)

A flat board is immersed vertically in water. Figures $2(a)$ and $2(b)$ show water surface shapes for the hydrophilic (attractive) and hydrophobic board materials respectively. We neglect the thickness of the board.

The board surface is in the $y z$-plane, and the horizontal water surface far away from the board is in the $x y$ plane with $z=0$. The surface shape does not depend on the y-coordinate. Let $\theta(x)$ be the angle between the water surface and the horizontal plane at a point (x, z) on the water surface in the $x z$-plane. Here $\theta(x)$ is measured with respect to the positive x-axis and the anticlockwise rotation is taken as positive. Let $\theta(x)$ be θ_{0} at the point of contact between the board and the water surface $(x=0)$. In the following, θ_{0} is fixed by the properties of the board material.
The water density ρ is constant and the water surface tension γ is uniform. The gravitational acceleration constant is given by g. The atmospheric pressure, P_{0}, is assumed to be always uniform. Let us determine

Theory

Q3-2
Latvian English (Latvia)
the water surface shape in the following steps. Note that the unit of surface tension is $\mathrm{J} / \mathrm{m}^{2}$ or equivalently N / m.

Fig. 2: Boards vertically immersed in the water. (a) hydrophilic board case;
(b) hydrophobic board case.
B. 1 We consider the case of a hydrophilic board, as shown in Fig.2(a). We note that $0.6 p t$ the water pressure, P, satisfies the conditions: $P<P_{0}$ for $z>0$ and $P=P_{0}$ for $z=0$. Express P at z in terms of ρ, g, z, and P_{0}.
B. 2 We consider a water block whose cutout is shown as shaded in Fig.3(a). Its $x z$ plane cross-section is shown in the hatched area in Fig.3(b). Let z_{1} and z_{2} be the left and right edge coordinates, respectively, of the boundary (water surface) between the water block and the air.
Obtain the horizontal component (x-component) of the net force per unit length along the y-axis, f_{x}, which is exerted on the water block due to the pressure, in terms of ρ, g, z_{1}, and z_{2}. Note that P_{0} results in no net horizontal force on the water block.

Theory

Fig. 3: Cutout form of the water block on the water surface. (a) Bird's eye view and (b) crosssectional view.
B. 3 Surface tension acting on the water block is balanced with the force f_{x} discussed 0.8 pt in B.2. We define θ_{1} and θ_{2} as the angles between the water surface and the horizontal plane at the left and right edges respectively. Express f_{x} in terms of γ, θ_{1}, and θ_{2}.
B. 4 The following equation holds at an arbitrary point (x, z) on the water surface, 0.8 pt

$$
\begin{equation*}
\frac{1}{2}\left(\frac{z}{\ell}\right)^{a}+\cos \theta(x)=\text { constant. } \tag{1}
\end{equation*}
$$

Determine the exponent a and express the constant ℓ in terms of γ and ρ. Note that this equation holds regardless of hydrophilic or hydrophobic board materials.
B. 5 In Eq. (1) in B.4, we assume that variation of the water surface is slow, i.e., $\left|z^{\prime}(x)\right| \ll 1$, so that we can expand $\cos \theta(x)$ with respect to $z^{\prime}(x)$ up to the second order. Then, differentiating the resultant equation with respect to x, we obtain the differential equation satisfied by $z(x)$. Solve this differential equation and determine $z(x)$ for $x \geq 0$ in terms of $\tan \theta_{0}$ and ℓ. Note that the vertical directions of Figs. 2 and 3 are exaggerated and they do not satisfy the condition, $\left|z^{\prime}(x)\right| \ll$ 1.

Part C. Interaction between two rods (3.5 points)

Identical rods A and B made of the same material are floating in parallel on the water surface and are placed at the same distance away from the y-axis (Fig.4).

Theory

Q3-4

Fig. 4: Two rods A and B floating on the water surface.
C. 1 At the contact points of the rod B and the water surface, we define the $z-1.0 p t$ coordinates z_{a} and z_{b}, and the angles θ_{a} and θ_{b}, as shown in Fig.5. Determine F_{x}, the horizontal component of force on the rod B per unit length along the y-axis, in terms of $\theta_{\mathrm{a}}, \theta_{\mathrm{b}}, z_{\mathrm{a}}, z_{\mathrm{b}}, \rho, g$, and γ.

Fig. 5: Vertical cross-sectional view of two rods floating on the water surface.
C. 2 We define the z-coordinate of the water surface, z_{0}, at the midpoint of two rods
in the $x z$-plane. Express the force F_{x} obtained in C. 1 without using $\theta_{\mathrm{a}}, \theta_{\mathrm{b}}, z_{\mathrm{a}}$, and z_{b}.
C. $3 \quad$ Let x_{a} be the x-coordinate of the contact point between the water surface and the left side of the rod B. Using the differential equation obtained in B.4, express the water level coordinate z_{0} of the midpoint of these two rods A and B in terms of x_{a} and z_{a}. You can use the constant ℓ introduced in B.4.

