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Neutron Stars (10 points)
We discuss the stability of large nuclei and estimate the mass of neutron stars theoretically and experi-
mentally.

Part A. Mass and stability of nuclei (2.5 points)
The rest energy of a nucleus 𝑚(𝑍, 𝑁)𝑐2 consisting of 𝑍 protons and 𝑁 neutrons is smaller than the sum
of rest energies of the protons and neutrons (hereafter called nucleons) by the binding energy 𝐵(𝑍, 𝑁).
Here, 𝑐 is the speed of light in a vacuum. Ignoring minor corrections, we can approximate the binding
energy as a sum of the volume term with 𝑎𝑉 , the surface term with 𝑎𝑆, the Coulomb energy term with
𝑎𝐶 , and the symmetry energy term with 𝑎sym in the following way:

𝑚(𝑍, 𝑁)𝑐2 = 𝐴𝑚𝑁𝑐2 − 𝐵(𝑍, 𝑁), 𝐵(𝑍, 𝑁) = 𝑎𝑉 𝐴 − 𝑎𝑆𝐴2/3 − 𝑎𝐶
𝑍2

𝐴1/3 − 𝑎sym
(𝑁 − 𝑍)2

𝐴 , (1)

where 𝐴 = 𝑍 +𝑁 is themass number and 𝑚𝑁 is the nucleonmass. In the calculation, use 𝑎𝑉 ≈ 15.8 MeV,
𝑎𝑆 ≈ 17.8 MeV, 𝑎𝐶 ≈ 0.711 MeV, and 𝑎sym ≈ 23.7 MeV (MeV = 106 electron volts).

A.1 Under the condition of 𝑍 = 𝑁 , find 𝐴 which maximises the binding energy per
nucleon, 𝐵/𝐴.
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A.2 Under the condition of fixed 𝐴, the atomic number of the most stable nucleus
𝑍∗ is determined by maximising 𝐵(𝑍, 𝐴 − 𝑍). For 𝐴 = 197, calculate 𝑍∗ using
Eq. (1).
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A.3 A nucleus having large𝐴 breaks up into lighter nuclei through fission in order to
minimise the total rest-mass energy. For simplicity, we consider one ofmultiple
ways to break a nucleus with (𝑍, 𝑁) into two equal nuclei, which occurs when
the following energy relation holds:

𝑚(𝑍, 𝑁)𝑐2 > 2𝑚(𝑍/2, 𝑁/2)𝑐2.
If this relation is written as:

𝑍2/𝐴 > 𝐶fission
𝑎𝑆
𝑎𝐶

,

obtain 𝐶fission up to two significant digits.
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Part B. Neutron star as a gigantic nucleus (1.5 points)
For large nuclei with a large enough mass number 𝐴 > 𝐴𝑐 (with a threshold value 𝐴𝑐), these nuclei are
stable against nuclear fission because of the sufficiently large binding energy due to gravity.
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B.1 We assume that 𝑁 = 𝐴 and 𝑍 = 0 is realised for sufficiently large 𝐴 , and that
Eq. (1) continues to hold with the addition of the gravitational binding energy.
The binding energy due to gravity is:

𝐵grav = 3
5

𝐺𝑀2

𝑅 ,

where 𝑀 = 𝑚𝑁𝐴 and 𝑅 = 𝑅0𝐴1/3 are the mass and the radius of the nucleus,
respectively, and 𝑅0 ≃ 1.1 × 10−15 m = 1.1 fm.
For 𝐵grav = 𝑎grav𝐴5/3, obtain 𝑎grav in units of MeV to one significant digit. Then,
ignoring the surface term, estimate 𝐴𝑐 up to the first significant digit. In the
calculation, use𝑚𝑁𝑐2 ≃ 939 MeV and𝐺 = ħ𝑐/𝑀2

𝑃 , where𝑀𝑃 𝑐2 ≃ 1.22×1022 MeV
and ħ𝑐 ≃ 197 MeV ⋅ fm.
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Part C. Neutron star in a binary system (6.0 points)
Some neutron stars are pulsars that regularly emit electromagnetic waves (which we call "light" for sim-
plicity) at a constant period. A neutron star often makes a binary system with a white dwarf. Let us
consider the star configuration shown in Fig. 1, where a light pulse from a neutron star N to the Earth E
passes near a white dwarfW of the binary system. Measuring the pulses influenced by the star's gravity
leads to an accurate estimation of themass ofW as explained below, which also results in the estimation
of the mass of N.

Fig. 1: Configurations with the 𝑥-axis along the line connecting N and E. (a) for 𝑥𝑁 < 0 and (b)
for 𝑥𝑁 > 0.
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C.1 As shown in the figure below, under constant gravitational acceleration 𝑔, we
place two levels I and II with a height differenceΔℎ(> 0). Set the identical clocks
at I, II, and 𝐹 , the free-falling system, denoted by clock-I, clock-II, and clock-𝐹 ,
respectively.

Set-up of the thought experiment.

We assume that an observer sits with clock-𝐹 , and that initially 𝐹 is placed at
the same height as that of clock-I and its velocity is zero. Since the clocks are
identical, they register equal time intervals, Δ𝜏𝐹 = Δ𝜏I. We then let 𝐹 fall freely
and work in the frame of 𝐹 , which is considered to be inertial. In this frame,
clock-II passes by clock-𝐹 with velocity 𝑣 so that the time dilation of clock-II can
be determined by the Lorentz transformation. When time Δ𝜏I elapses on clock-
𝐹 , time Δ𝜏II elapses on clock-II.
Determine Δ𝜏II in terms of Δ𝜏I up to the first order in Δ𝜙/𝑐2, where Δ𝜙 = 𝑔Δℎ is
a difference of the gravitational potential, i.e., the gravitational potential energy
per unit mass.
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C.2 Under the gravitational potential 𝜙, time delays change the effective speed of
light, 𝑐eff, observed at infinity, even though the local speed of light is 𝑐. When
𝜙(𝑟 = ∞) = 0, 𝑐eff can be given up to the first order in 𝜙/𝑐2 as:

𝑐eff ≈ (1 + 2𝜙
𝑐2 ) 𝑐

including the effect of space distortion, which was not featured in C.1. We note
that the light path can be approximated as a straight line.
As shown in Fig. 1, we take the 𝑥-axis along the light path from the neutron star
N to the Earth E and place 𝑥 = 0 at the point where the white dwarf W is the
closest to the light path. Let 𝑥𝑁 (< 0) be the 𝑥-coordinate of N, 𝑥𝐸 (> 0) be that
of E, and 𝑑 be the distance betweenW and the light path.
Estimate the changes of the arrival time Δ𝑡 of the light from N to E caused by
the white dwarf with mass 𝑀WD and evaluate the answer in a simple form by
disregarding higher order terms of the following small quantities: 𝑑/|𝑥𝑁 | ≪ 1,
𝑑/𝑥𝐸 ≪ 1, and 𝐺𝑀WD/(𝑐2𝑑) ≪ 1. If necessary, use the following formula:

∫ 𝑑𝑥√
𝑥2 + 𝑑2 = 1

2 log(
√

𝑥2 + 𝑑2 + 𝑥√
𝑥2 + 𝑑2 − 𝑥

) + 𝐶. ( log is the natural logarithm)
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C.3 As shown below, in a binary star system,N andW are assumed to be moving in
circular orbits with zero eccentricity around the centre of mass 𝐺 on the orbit
plane. Let 𝜀 be the orbital inclination angle measured from the orbit plane to
the line directed toward E from 𝐺, and let 𝐿 be the length between N and W
and 𝑀WD be the mass of the White Dwarf. In the following, we assume 𝜀 ≪ 1.

Binary star system.

We observe light pulses fromN on E far away fromN. The light path to E varies
with time depending on the configuration of N and W. The delay in the time
interval of arriving pulses on E has the maximum value Δ𝑡max for 𝑥𝑁 ≃ −𝐿 and
the minimum value Δ𝑡min for 𝑥𝑁 ≃ 𝐿. Calculate Δ𝑡max − Δ𝑡min in a simple form
disregarding higher order terms of small quantities as done in C.2. We note
that the delays due to gravity from stellar objects other thanW are assumed to
cancel out in Δ𝑡max − Δ𝑡min.
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C.4 The below figure shows the observed time delay as a function of the orbital
phase 𝜑 for the binary star system with 𝐿 ≈ 6 × 106 km and cos 𝜀 ≈ 0.99989.
Estimate 𝑀WD in terms of the solar mass 𝑀⊙ and show the results for 𝑀WD/𝑀⊙
up to the first significant digit. Here the approximate relation, 𝐺𝑀⊙/𝑐3 ≈ 5 𝜇s,
can be used.

Observed time delays Δ𝑡 as a function of the orbital phase 𝜑 (see the
figure in C.3) to locate N andW on the orbits.
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C.5 In the binary system of neutron stars, the two stars release energy and angular
momentum by emitting gravitational waves, and they eventually collide and
merge. For simplicity, let us consider only a circular motion with the radius 𝑅
and the angular velocity 𝜔. Then 𝜔 = 𝜒𝑅𝑝 holds with the constant 𝜒 depending
on neither 𝜔 nor 𝑅 if relativistic effects are ignored. Determine the value for 𝑝.

0.4pt
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C.6 The amplitude of the emitted gravitational wave from the binary system in C.5
is proportional to𝑅2𝜔2. The figure below qualitatively shows four different tem-
poral profiles of the observed gravitational waves before the two-star collision.
Select the most appropriate profile from (a) to (d).

Observed data profiles of gravitational waves.
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