T1: Floating cylinder (10 pts)

A solid, uniform cylinder of height $h=10 \mathrm{~cm}$ and base area $s=100 \mathrm{~cm}^{2}$ floats in a cylindrical beaker of height $H=20 \mathrm{~cm}$ and inner bottom area $S=102 \mathrm{~cm}^{2}$ filled with a liquid. The ratio between the density of the cylinder and that of the liquid is $\gamma=0.70$. The bottom of the cylinder is above the bottom of the beaker by a few centimeters. The cylinder is oscillating vertically, so that its axis always coincides with that of the beaker. The amplitude of the liquid level oscillations is $A=1 \mathrm{~mm}$.

Find the period of the motion T. Neglect the viscosity of the liquid.

T2: Thermal oscillations (10 pts)

A resistor is made of a material which undergoes a phase transition so that its resistance takes one of the two values, R_{1} if its temperature is smaller than T_{c}, and $R_{2}>R_{1}$ if the temperature is larger than T_{c}.

This resistor is connected to a voltage source through an inductor of inductance L. It appears that if the applied voltage V is between two critical values, $V_{1}<V<V_{2}$, the temperature of the resistor starts oscillating. Assume that (i) the heat flux P from the resistor to the ambient medium is given by $P=\alpha\left(T-T_{0}\right)$, where α is a constant, T denotes the temperature of the resistor, and T_{0} is the ambient temperature; (ii) the geometrical size of the resistor is so small that it will reach a thermal equilibrium much faster than the characteristic time L / R_{2}.
(a) (2 pts) Express V_{1} and V_{2} in terms of the other parameters defined above.
(b) (6 pts) Assuming that $V_{1}<V<V_{2}$, sketch qualitatively how the temperature of the resistor T depends on time t, and find the ratio $\left(T_{\max }-T_{0}\right) /\left(T_{\min }-T_{0}\right)$, where $T_{\text {max }}$ and $T_{\text {min }}$ denote the maximal and minimal values of T, respectively.
(c) (2 pts) Find the period of oscillations if $V=\sqrt{V_{1} V_{2}}$ and $R_{2}=16 R_{1}$.

T3: Dipole in a magnetic field (10 pts)

Two small balls of mass m each with charges $+q$ and $-q$ respectively, connected by a rigid massless rod of length d, form a dipole. The dipole is parallel to plane $X Y$ and is placed in a uniform magnetic field \vec{B} perpendicular to $X Y$.

Initially, the dipole is aligned with the direction X and rotates in the $X Y$ plane with initial angular velocity ω_{0}, as shown. Its center of mass is initially located at origin and given initial velocity \vec{v}_{0} parallel to $X Y$, as well.

Consider three distinct scenarios (a, b, c-d):
(a) (2 pts) Find ω_{0} and the direction of \vec{v}_{0}, so that the center of mass will move with the constant velocity $\vec{v}=\vec{v}_{0}$?
(b) (3 pts) Given ω_{0}, find such \vec{v}_{0} (direction and magnitude), so that the center of mass will travel in a circle. Find the circle radius R_{c} and the coordinates x_{c}, y_{c} of its center. You don't need to prove the uniqueness of the solution.
(c) (4 pts) Given $\vec{v}_{0}=0$, find the minimal $\omega_{0}=\omega_{\text {min }}$ necessary for the dipole to reverse its direction during the motion.
(d) (1 pt) If the dipole starts with $\vec{v}_{0}=0$ and $\omega_{0}=\omega_{\text {min }}$ found in part (c), the trajectory of its center of mass has an asymptote. Find the distance D from the origin to the asymptote.

Useful vector identity:

$$
\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})
$$

where " \times " and "." denote vector product and scalar product respectively.

