
The 43rd International Physics Olympiad — Theoretical Competition

Tartu, Estonia — Tuesday, July 17th 2012

• The examination lasts for 5 hours. There are 3 problems

worth in total 30 points. Please note that the points

allocated to each of the three theoretical problems

differ.

• You must not open the envelope with the prob-

lems before the sound signalling the beginning of

the competition (three short signals).

• You are not allowed to leave your working place

without permission. If you need any assistance

(broken calculator, need to visit a restroom, etc), please

raise the appropriate flag (“help” or “toilet”) on a long

handle at your seat above your seat box walls and keep

it raised until an organizer arrives.

• Your answers must be expressed in terms of those

quantities which are highlighted in the problem text,

and may also contain fundamental constants if needed.

So, if it is written that “the box height is a and the

width is b” then a can be used in the answer, and b may

not be used (unless it is highlighted somewhere else, see

below). Those quantities which are highlighted in the

text of a subquestion can be used only in the answer to

that subquestion; the quantities which are highlighted

in the introductory text of the Problem (or a Part of a

Problem), i.e. outside the scope of any subquestion, can

be used for all the answers of that Problem (or of that

Problem Part).

• Use only the front side of the sheets of paper.

• For each problem, there are dedicated Solution Sheets

(see header for the number and pictogramme). Write

your solutions onto the appropriate Solution Sheets. For

each Problem, the Solution Sheets are numbered; use the

sheets according to the enumeration. Always mark on

which Problem Part and Question you are work-

ing. Copy the final answers into the appropriate boxes

of the Answer Sheets. There are also Draft papers;

use these for writing things which you don’t want to be

graded. If you have written something that you don’t

want to be graded on the Solution Sheets (such as an

initial and incorrect solution), cross it out.

• If you need more paper for a certain problem, please raise

the “help” flag and tell an organizer the problem num-

ber; you will be given two Solution sheets (you may do

this more than once).

• You should use as little text as possible: try to

explain your solution mainly with equations, numbers,

symbols and diagrams.

• The (first) single sound signal tells you that there are

30 min of solving time left; the (second) double sound

signal means that 5 min is left; the (third) triple sound

signal marks the end of solving time. After the third

sound signal you must stop writing immediately.

Put all the papers into the envelope at your desk. You

are not allowed to take any sheet of paper out of

the room. If you have finished solving before the final

sound signal, please raise your flag.

— page 1 of 5 —



Problem T1. Focus on sketches (13 points)

Part A. Ballistics (4.5 points)

A ball thrown with an initial speed v0 moves in a homogeneous

gravitational field in the x–z plane, where the x–axis is hori-

zontal and the z–axis is vertical. The z–axis is antiparallel to

the gravitational acceleration g . Neglect the air drag.

i. (0.8 pts) Varying the angle at which a ball is thrown from

the origin with a fixed initial speed v0 allows targets within

the region given by

z ≤ z0 − kx2

to be hit. You may use this fact without proving it. Find the

constants z0 and k.

ii. (1.2 pts) Now, the ball may be launched

from any point on the ground (z = 0), and the

launching angle can be adjusted as needed. The

aim is to hit the highest point of a spherical

building of radius R (see the figure) with the

smallest possible initial speed v0. The ball may not bounce off

the building before hitting the target. Sketch qualitatively the

shape of the optimal trajectory of the ball (in the designated

box on the answer sheet). Note: the points are awarded for the

sketch only.

iii. (2.5 pts) What is the minimal launching speed vmin needed

to hit the highest point of a spherical building of radius R ?

La Géode, Parc de la Villette, Paris. Photo: katchooo/flickr.com

Part B. Air flow around a wing (4 points)

For this Problem Part, the following information may be

useful. For a flow of liquid or gas in a tube,

p + ρgh +
1

2
ρv2 = constant

holds along a streamline, assuming that the velocity v is much

smaller than the speed of sound. Here ρ is the density, h is the

height, g is the gravitational acceleration, and p is the hydro-

static pressure. Streamlines are defined as the trajectories of

fluid particles (assuming that the flow pattern is stationary).

Note that the term 1

2
ρv2 is called the dynamic pressure.

In the figure below, a cross-section of an aircraft wing is de-

picted, together with streamlines of the air flow around the

wing as seen in the wing’s reference frame. Assume that (a)

the air flow is purely two-dimensional (i.e. that the velocity

vectors of air particles lie in the figure plane); (b) the stream-

line pattern is independent of the aircraft speed; (c) there is

no wind; (d) the dynamic pressure is much smaller than the

atmospheric pressure p0 = 1.0 × 105 Pa . You may use a ruler

to take measurements from the figure on the answer sheet .

i. (0.8 pts) If the aircraft’s ground speed is v0 = 100 m/s,

what is the speed vP of the air at the point P (marked in the

figure) with respect to the ground?

ii. (1.2 pts) In the case of high relative humidity, once the

ground speed of the aircraft increases above a critical value

vcrit, a stream of water droplets is observed trailing the wing.

The droplets form at a certain point Q. Mark the point Q in

the figure on the answer sheet. Explain qualitatively (using

formulae and as little text as possible) how you determined its

position.

iii. (2.0 pts) Estimate the critical speed vcrit using

the following data: the relative humidity of the air is

r = 90% , the specific heat of air at constant pressure is

cp = 1.00 × 103 J/kg · K , the pressure of saturated water va-

pour is psa = 2.31 kPa at the temperature of the unperturbed

air Ta = 293 K and psb = 2.46 kPa at Tb = 294 K . Depend-

ing on your approximations you may also need the specific heat

of air at constant volume cV = 0.717 × 103 J/kg · K . Note

that the relative humidity is defined as the ratio of the vapor
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pressure to the saturated vapor pressure at the given temper-

ature. The saturated vapor pressure is defined as the vapor

pressure at which vapor is in equilibrium with the liquid.

Part C. Magnetic straws (4.5 points)

Consider a cylindrical tube made of a super-

conducting material. The length of the tube

is l and the inner radius is r , with l ≫ r.

The centre of the tube coincides with the

origin, and its axis coincides with the z-

axis. There is a magnetic flux Φ through

the central cross-section of the tube, i.e. at

z = 0 for x2 + y2 < r2.

A superconductor is a material which expels any magnetic

field (the field is zero inside it).

i. (0.8 pts) In the designated box on the answer sheet, sketch

five magnetic field lines which pass through the five red dots

marked on the axial cross-section of the tube.

ii. (1.2 pts) Find the z-directional tension force T in the

middle of the tube (i.e. the force which the two halves of the

tube, z > 0 and z < 0, exert on each other).

iii. (2.5 pts) Now there is another tube,

identical and parallel to the first one. The

second tube has an oppositely directed mag-

netic field to the first tube, and its centre

is placed at y = l , x = z = 0 (so that the

tubes form opposite sides of a square). De-

termine the magnetic force F which the two tubes exert on

each other.
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Problem T2. Kelvin water dropper (8 points)

The following facts about the surface tension may be useful

for this problem. For the molecules of a liquid, positions at

the liquid-air interface are less favourable than positions in the

bulk of the liquid. Therefore, this interface has the so-called

surface energy U = σS, where S is the surface area of the

interface and σ is the surface tension coefficient of the liquid.

Furthermore, two fragments of the liquid surface pull on each

other with a force F = σl, where l is the length of the straight

line separating the fragments.

A long metallic pipe with internal diameter d is

pointing directly downwards and water is slowly

dripping from a nozzle at its bottom (see the fig-

ure). Water is to be considered to be electrically

conducting, its surface tension coefficient is σ

and its density is ρ . Always assume that d ≪ r.

Here, r is the radius of the droplet hanging below

the nozzle, which grows slowly with time until

the droplet separates from the nozzle due to the gravitational

acceleration g .

Part A. Single pipe (4 points)

i. (1.2 pts) Find the radius rmax of a droplet just before it

separates from the nozzle.

ii. (1.2 pts) Relative to the distant surroundings, the pipe’s

electrostatic potential is ϕ . Find the charge Q of a droplet

when its radius is r .

iii. (1.6 pts) For this question, assume that r is kept con-

stant and ϕ is slowly increased. The droplet becomes unstable

and breaks into two pieces if the hydrostatic pressure inside the

droplet becomes smaller than the atmospheric pressure. Find

the critical potential ϕmax at which this will happen.

Part B. Two pipes (4 points)

An apparatus called a “Kelvin water dropper” consists of two

pipes (each identical to the one described in Part A) connected

by a T-junction (see the figure). One end of each pipe is at the

centre of a cylindrical electrode of height L and diameter D,

where L ≫ D ≫ r. Each tube drips at a rate of n droplets

per unit time. Droplets fall from a height H into conduct-

ive bowls underneath the nozzles, which are cross-connected

to the electrodes as shown in the figure. The electrodes are

connected via a capacitance C . There is no net charge on the

system of bowls and electrodes. Note that the water container

is grounded. The first droplet to fall will have a microscopic

charge, which will cause an imbalance between the two sides

and a small charge separation across the capacitor.

i. (1.2 pts) Express the magnitude

of the charge Q0 of the droplets

which fall at the instant when the

capacitor’s charge is q , in terms of

rmax (as found in Part A-i). Neglect

the effect described in Part A-iii.

ii. (1.5 pts) Find the dependence of

q on time t by approximating it as a

continuous function q(t) and assum-

ing that q(0) = q0 .

iii. (1.3 pts) The dropper’s functioning can be hindered by

the effect considered in Part A-iii. Additionally, there is a limit

Umax to the maximum voltage between the electrodes, determ-

ined by the electrostatic push between a droplet and the bowl

beneath it. Find Umax.
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Problem T3. Protostar formation (9 points)

Let us model the formation of a star as follows. A spherical

cloud of sparse interstellar gas, initially at rest, starts to col-

lapse due to its own gravity. The initial radius of the cloud is

r0 and its mass is m . The temperature of the surroundings

(which are much sparser than the gas) and the initial temper-

ature of the gas are uniformly T0 . You may assume that the

gas is ideal. The average molar mass of the gas is µ and its

adiabatic index is γ > 4

3
. Assume that Gmµ

r0

≫ RT0, where

R is the gas constant and G is the universal gravitational

constant.

i. (0.8 pts) During much of the collapse, the gas is so trans-

parent that any heat generated is immediately radiated away,

i.e. the cloud stays in thermodynamic equilibrium with its sur-

roundings. By what factor n does the pressure increase when

the radius is halved ( r1 = 0.5r0 )? Assume that the gas density

stays uniform.

ii. (1 pt) Estimate the time t2 taken for the radius to shrink

from r0 to r2 = 0.95r0 . Neglect the change of the gravita-

tional field at the position of a falling gas particle.

iii. (2.5 pts) Assuming that the pressure stays negligible, find

the time tr→0 taken for the cloud to collapse from radius r0

down to a much smaller radius, using Kepler’s Laws for ellipt-

ical orbits.

iv. (1.7 pts) At some radius r3 ≪ r0, the gas becomes dense

enough to be opaque to the heat radiation. Calculate the

amount of heat Q radiated away during the collapse from ra-

dius r0 down to radius r3.

v. (1 pt) For radii smaller than r3 you may neglect heat radi-

ation. Determine how the temperature T of the cloud depends

on its radius r < r3.

vi. (2 pts) Eventually we cannot neglect the effect of the pres-

sure on the dynamics of the gas and the collapse stops at r = r4

(with r4 ≪ r3 ). However, the radiation can still be neglected

and the temperature is not yet high enough to ignite nuclear fu-

sion. The pressure of such a protostar is no longer uniform, but

rough estimates with inaccurate numerical prefactors can still

be made. Estimate the final radius r4 and the corresponding

temperature T4.
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