Using refractive index gradients to measure diffusivity between liquids
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One most commonly thinks of refraction occurring when light strikes at an angle to an interface
separating two regions with different refractive indices. However, a light ray traveling normal to
such an interface will also be refracted, if the second region has a refractive index gradient parallel
to the interface plane. If liquid—liquid interdiffusion produces such a gradient in the second region,
then one can infer the diffusivity of solute particles by measuring the time-dependent refraction. We
have performed such diffusion experiments with three different aqueous solutions and found
reasonably good agreement with diffusivity values given in the literature. The experimental setup
and data analysis are simple enough for an undergraduate student to complete in a few weeks,

making this investigation ideal for inclusion in an advanced laboratory course.
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I. INTRODUCTION

Twenty-five years ago Barnard and Ahlborn' published an
article describing the deflection of a laser beam by a refrac-
tive index gradient. In their experiment the mixing in a ver-
tical column between a pure liquid and a solution produced a
refractive index gradient (dn/dy). As the solute particles
diffused upward into the pure liquid, this gradient was gen-
erated by the varying solute concentration. By measuring the
deflection produced in a horizontally incident laser beam,
therefore directed perpendicular to the refractive index gra-
dient, they determined this refractive index gradient as a
function of vertical position. With the appropriate experi-
mental conditions, the gradient was directly proportional to
the angular deflection of the beam, enabling a straightfor-
ward measurement of the vertical variation of the gradient.

Since particle diffusion produced the variation in the sol-
ute concentration which in turn produced the refractive index
gradient, their plot of the gradient versus vertical position
(dn/dy vs y) changed over time. However, since the area
under this curve is simply the difference in the index of
refraction between the pure liquid and the initial solution, the
area remained constant. Barnard and Ahlborn concluded
their paper by noting that this technique ‘‘can be used to
follow the mixing of two liquids.”” Approximately two years
after this possibility was noted, Bassi et al.* published a pa-
per demonstrating the effectiveness of a sophisticated real-
ization of this technique in making high precision measure-
ments of liquid interdiffusivity. In this paper we present a
simpler version of the technique, suitable for inclusion in an
advanced undergraduate laboratory. Using classical diffusion
theory, we have generated theoretical gradient profiles
(dn/dy vs y) as a function of time. By fitting these to the
experimental profiles we have determined the diffusion co-
efficient (D) for several types of solute molecules in water,
finding reasonable to good agreement with values reported in
the literature.

The reference literature cites a number of techniques to
experimentally determine the diffusion coefficients in liquid
solutions,” with interference-based optical methods being
among the most precise and sensitive.* However, these inter-
ference methods, due to their relative complexity in experi-
mental setup and analysis, may be considered problematic
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for inclusion in an advanced undergraduate laboratory cur-
riculum in which a few weeks are allotted for a given experi-
ment. The optical method described here is simple, low-cost,
and may be completed by undergraduate students in a few
weeks. Furthermore, its combination of concepts from op-
tics, dielectric theory, and classical diffusion provides an in-
teresting mixture of physical concepts, the sort of combina-
tion often encountered in scientific experimentation, but
often lacking in much of a student’s undergraduate educa-
tion. A review of the last thirty years of American Journal of
Physics and The Physics Teacher yields several articles re-
porting on the experimental investigation of diffusion in lig-
uids. One group of articles describes the use of light scatter-
ing to measure the diffusivity of relatively large particles
(0.01-50 um).>® Here we report on the diffusion of much
smaller particles (5-10 A) where light scattering is negli-
gible. For particles of this type we find two articles in the
physics education literature: one using buoyancy as a method
of determining solute concentration,’ the other using a holo-
graphic technique ®

II. EXPERIMENTAL SETUP AND PROCEDURE

A schematic of the setup is shown in Fig. 1. A He—Ne
laser is directed onto a glass cylinder whose axis is perpen-
dicular to the beam and ~45° to the vertical, spreading the
beam into a plane. The light travels ~1 m from the cylinder,
striking a glass-walled cell (6.5cmX6.5cmX 1.8cm) con-
taining the liquid. Since the beam is spread into a plane tilted
~45° to the vertical, the light strikes the cell at different
heights which, having different refractive gradients, produce
different angular deflections. The refracted light leaves the
cell, traveling ~2 m before striking a screen. The 1 m dis-
tance from the cylindrical lens to the cell ensures that the
light is nearly perpendicular to the vertical surface of the
fluid, while the 2 m distance from the cell to the screen
enables an accurate measurement of the small angle of de-
flection.

During the filling of the cell, it is important to minimize
mixing so that an initial sharp boundary exists between the
pure liquid and the solution. This can be accomplished by a
simple method described in Ref. 8. To enable filling from
below, a reservoir with a shut-off valve is connected by a
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Fig. 1. Schematic of the geometry of the experimental setup: distance be-
tween cylindrical lens and cell zo~1 m, cell thickness d~2 cm, and dis-
tance between cell and screen z~2 m. The thin diagonal lines in the cell are
the laser trace upon entering the cell (straight line) and upon leaving the cell
(refracted line).

tube to a small hole (~0.5 cm diameter) in the bottom of the
cell housing. We fill the reservoir with the solution (greater
density), allowing a complete filling of the tube until the
liquid level is flush with the bottom of the cell. The cell is
then filled halfway from above with the pure liquid (lesser
density), and finally the shut-off valve is opened to allow the
solution to slowly flow into the cell from below. We typi-
cally use 15-20 min for this final slow filling, which keeps
the initial mixing layer thickness less than 2 mm.

Before filling the cell, the beam strikes the screen along a
straight line at ~45° to the vertical. After filling, the differ-
ent angular deflections at different heights produce a curved
laser trace on the screen. Figure 2 is a sketch of this curved
trace made by the laser. At numerous locations we measure
the vertical position of the undeflected trace (£) and the ver-
tical deflected distance () between this diagonal base line
and the curved trace.

III. DETERMINATION OF THE EXPERIMENTAL
GRADIENT OF THE REFRACTIVE INDEX

To obtain a profile of the refractive index gradient as a
function of vertical position in the fluid we must connect the
vertical position on the screen () to the vertical height in the

Fig. 2. Sketch of the curved laser trace appearing on the recording screen.
Relative to the features shown, the actual laser trace is slightly wider than is
depicted in this sketch. Direct measurements of the deflection (&) and its
associated vertical position (£) allow determination of the refractive gradient
(dn/dy) at a given vertical position (y) in the diffusion cell.
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Fig. 3. Geometrical relationship between incident and refracted wave fronts
using Huygens’ construction. A vertical variation in the refractive index
causes light rays separated by distance Ay to travel different distances in
time A¢. This causes a new wave front to form at angle « with respect to the
initial wave front.

cell (y), and connect the vertical deflection () to the gradi-
ent (dn/dy). From the geometry of the experimental setup
we have

€20

_zo-l—d-i-z’

y (M
where the various distances (z,z,d) are shown in Fig. 1.
We develop the connection between & and dn/dy using Huy-
gens’ principle. We restrict this analysis to the limiting case
that the thickness of the cell (d) and the refractive index
gradient are both small enough that the refracted angle («)
produces negligible vertical displacement of the ray within
the cell. In this limit each ray travels at nearly constant ver-
tical height within the cell and is deflected by a single refrac-
tive gradient associated with this height. Figure 3 shows a
schematic of two light rays in this limit. The rays are sepa-
rated by a vertical distance Ay traveling a time Az through a
medium with a refractive index gradient. Assuming the re-
fractive index decreases with increasing height, the upper ray
travels a distance d|=(c¢/n)Ar while the lower ray travels a
distance d,=(c/(n+An))At. A Huygens’ construction of
the refracted wave front produces the angular deflection
shown in Fig. 3. By simple trigonometry we have

c An/Ay dn/dy
tan a~ a~ ;At , ~d .

n
Reference 4 contains a more sophisticated analysis using the
short wavelength limit of Maxwell’s equations, the eikonal
differential equation, which in the small angle limit reduces
to Eq. (2). The ray undergoes an additional refraction as it
leaves the cell producing a final angle of refraction in air ()
given by n sin a~na~sin B~tan 3, where the index of air is
taken to be one. Combining these results with the fact that
tan B=d/z (see Fig. 1) one obtains

dn_ )
dy zd’

2

3)

IV. DETERMINATION OF THE THEORETICAL
GRADIENT OF THE REFRACTIVE INDEX

For an interdiffusing two-component fluid, where the sol-
ute concentration (C) depends on vertical position and the
index of refraction depends on the concentration, we may
write the expected refractive index gradient as
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We use a Fick’s law diffusion model to produce an expres-
sion for the time-dependent dC/dy and a simple dielectric
model to create an expression for dn/dC. Fick’s law states
that the particle current density is proportional to the gradient
of the particle concentration, where the proportionality con-
stant is the diffusion coefficient, or diffusivity, D. Combining
this with the continuity equation gives, in one dimension,
ac 49 ( ac)
at  ay\ T ay)” “
Equation (4) has been written to allow for the possible
variation of the diffusion coefficient with concentration:
D(C). If we assume that the diffusivity is independent of
concentration the solution of Eq. (4) is straightforward. For
an initial ‘‘narrow spike’’ of concentration C, the model
predicts that the concentration will take a Gaussian shape
with a width that spreads with time.” In our experimental
situation, the initial concentration approaches a step func-
tion: C=Cy(y<h), C=0(y>h), where h is the initial
height of the solution. For this case Fickian diffusion
produces'”

C(y,t)=ﬂ(1—erf y—h , (35)
2 2Dt
where erf(z) is the error function given by
erf(z)= i fz exp(—s?)ds. (6)
7o

This solution [Eq. (5)] assumes an infinitely long fluid
column, so that diffusing particles never reflect from a
boundary. For a finite-sized column with particle reflection at
the ends the solution becomes'’

Cy = h+2kL—y h—2kL+y
Cy.n=— 2 |ef

K=o 2Di 2\Di
)

where L is the total height of the two-component fluid col-
umn. Differentiating this expression yields

dy 2\wDtk=-=

+erf

k)

2

ic  C, h+2kL+y

2Dt
h+2kL—y

E—— . 8
N ] (®)

Given our experimental parameters: h=3 cm, L=6 cm, D
~5x10~%cm?s, only a small fraction of diffusing particles
(0.01C,) approach the boundaries after ~38 h. Since the
time duration of our experiments has never exceeded this
duration, we have found that limiting the summation in Eq.
(8) to |k|=<2 is more than sufficient to account for any par-
ticle reflection.

For a material, the index of refraction arises from the di-
pole moment per unit volume (P) taken to be linearly depen-
dent on the average electric field: P= yg(E, where y is the
volume electric susceptibility of the material. The phase ve-
locity of an electromagnetic wave is v=/1/e wy=c/n where

2

—exp
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Fig. 4. Comparison of experimental (@) and theoretical (—) refractive in-
dexes as a function of sucrose concentration in water. Experimental values
are measured with an Abbé refractometer and theoretical values are calcu-
lated from Eq. (11) with n,=1.545 and n,=1.333.

c is the velocity in vacuum and e =(1+ x)g,. Combining
these last two equations we may express the susceptibility as

x=n*+1. ©)

Solute and solvent molecules in a solution will contribute
distinct electric susceptibilities given by y, and x;, respec-
tively. If the fractional volume of the solute in the solution is
F, then the susceptibility of the solution is given by

X=Fx;+(1=F)x;. (10)

We can express the concentration C as a dimensionless, rela-
tive solute concentration defined as the ratio of the number
of solute particles per unit volume in solution to the number
of solute particles per unit volume in the pure solute. Using
the fact that C equals F and using Eq. (9), we may rewrite
Eq. (10) as

n2=n?+C(n§—nJ%). (11)

This form of the refractive index’s dependence on concen-
tration may be experimentally tested using an Abbe refrac-
tometer. Figure 4 shows the theoretical prediction of Eq. (11)
for sucrose in water to be in good agreement with the mea-
sured values. Fits of similar quality were also obtained for
the two other solutions investigated: glycerol in water and
sodium thiosulfate in water. Differentiating Eq. (11) we ob-
tain

2_ 2
dn ng—ng

dc 2\/n]2p+ C(n?—njzc) .
Multiplying Eq. (8) by Eq. (12) produces the theoretical ex-
pression for dn/dy.

(12)

V. RESULTS AND DISCUSSION

By adjusting the diffusion coefficient (D) we have suc-
cessfully modeled the time-dependent experimental gradient
curves [Eq. (3)] for three aqueous solutions. Figure 5 shows
results for a sodium thiosulfate solution using D=7.5
X 10~% cm?/s, while Fig. 6 shows results for a sucrose solu-
tion using (D=4.0X10"%cm?s). A similar quality of agree-
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Fig. 5. Comparison of experimental and theoretical refractive index gradi-
ents for sodium thiosulfate in water at different times. Symbols are the
experimental results at the following times: (@) 46 min, (H) 109 m, (V) 241
m, (@) 1387 m. The solid line is a theoretical prediction with D=7.5
X 107% cm¥s. Tnitial concentration is 0.27 g/ml.

ment between theory and experiment is achieved for a glyc-
erol solution (D=6.0xX10"°cm?%s). Since the diffusivity
controls the time dependence of the height and width of the
theoretical curves, a 10%—20% change in D produces a sig-
nificant degradation in the fit to experiment. In both Figs. 5
and 6 we have omitted curves for times when the mixing
region has a width of less than ~1.5 cm, since the large
refractive gradient produces a large angle of deflection,
which violates the small angle approximation we assume in
theory.

As in the case with aqueous sodium thiosulfate, students
in an advanced lab setting may wish to work with a solute/
solvent combination whose D value is unknown. In these
cases an order of magnitude estimate of the expected diffu-
sivity is instructive. The Stokes—Einstein relation provides
such an estimate by considering the case of a sphere of ra-

0.07

0.05

0.03

dn/dy (1/cm)

0.01

3
distance (cm)

Fig. 6. Comparison of experimental and theoretical refractive index gradi-
ents for sucrose in water at different times. Symbols are the experimental
results at the following times: (H) 100 min, (4) 245 m, (®) 1736 m. The
solid line is the theoretical prediction with D=4.0X 10~ cm?s. The initial
concentration of sucrose is 0.30 g/ml.
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dius R diffusing through a fluid with viscosity #. In this
idealized situation we may estimate the diffusion coefficient
to be

kgT
D= .
67 MR

(13)

For low concentration solutions this expression yields rea-
sonably accurate results for molecules whose masses are less
than several hundred atomic mass units,'” while for higher
concentrations, such as used in the present work, we expect
only qualitative agreement with experiment.13 Using the vis-
cosity of water, the temperature (293 K), and experimental
diffusion coefficient (D=7.5X10"%cm?s), Eq. (13) yields
a quite reasonable effective molecular radius of ~3 A for
sodium thiosulfate.

Unlike sodium thiosulfate, the diffusivities of aqueous so-
lutions of sucrose'* and glycerol'® have been measured over
a range of concentrations. Based on the Stokes—FEinstein re-
lation, if not physical intuition, we expect the diffusivity to
decrease as the viscosity increases with increasing concen-
tration. This is indeed the case for sucrose and glycerol; fur-
thermore this decrease is nearly linear with increasing con-
centration for both solutes over the concentration range
present in our experiment (see Refs. 14 and 15). Based on
these results, we estimate the average diffusivity appropriate
for our experiment to be that for a concentration equal to
50% of our initial concentration. According to Refs. 14 and
15, our expected average diffusivities are 4.4X10°cm?s
for sucrose and 7.1X 10~° cm?s for glycerol.

While these diffusivity values are reasonably close to
those we obtained, one might question the validity of replac-
ing a concentration-dependent diffusivity with a single aver-
age diffusivity. In the Appendix we present an approximate
solution of Eq. (4) assuming a linear dependence of diffusiv-
ity on concentration. We have not included this discussion in
the main body of this paper since we feel the mathematical
complexity introduced in the analysis undercuts one purpose
of this paper, which is to introduce a simple method of ana-
lyzing the diffusion process in liquids. Furthermore, this
more sophisticated analysis produces theoretical results
which are nearly indistinguishable from those found using a
single, average diffusivity.

In conclusion, we have presented a simple experimental
technique whereby one may determine the diffusion coeffi-
cient of solute particles in a liquid. The results are in reason-
able agreement with those obtained using more sophisticated
techniques. The technique is well suited for inclusion in an
advanced undergraduate lab course, with the analysis requir-
ing a nice combination of topics drawn from optics, dielec-
tric theory, and classical diffusion theory.

ACKNOWLEDGMENTS

We wish to thank K. Roscoe for help in data collection
and analysis, F. Wolfe for fabrication of diffusion cells, and
B. Pirih for help with figures.

APPENDIX

In this Appendix we use the work of J. Gillis and O.
Kedem!® to construct an approximate solution to Eq. (4) as-
suming that the diffusion coefficient varies according to

D=Dy(1+kC). (A1)
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If the diffusivity varies in this linear fashion Eq. (4) may be

written as
d2C+2)\dC+k Cd2C+ dc? =0 A2
d\? d\ d\? \dn) | (A2)

where A=(y—h)/2\/Dyt and C is the dimensionless solute
concentration. The method of solution in Ref. 16 is to ex-
pand C(MN) as a power series in k:

CN)=Fo(N)+kF{(N)+k>Fy(N)+--. (A3)

Substituting Eq. (A3) and its derivatives into Eq. (A2) and
demanding that the coefficient of each power of k separately
vanishes, one obtains a set of differential equations for the
F; . To first order the solutions of these differential equations
(F;) and their derivatives (dF;/d\) are given by

Co
Fo(\)=—(1=2(\)). (A
dFg __Cog AS
K— 7 l( )9 ( )
Co 2 d
FZg| 1@ 5 AR @R | (A6)
dF, Cy®
= S [1-20 2= (3-20) D+ 003, (A7)

dn 8
where C is the initial concentration, @ is the error function,
and @ =dP/d\. Since

dn dn dC JN

dy dC d\ dy
we may use Egs. (A3)—(A7) with Eq. (12) to express the
theoretical refractive index gradient. The fitting to experi-
ment is now performed by adjusting the parameters k and
D, . We performed this analysis for the case of the aqueous
sucrose  solution, setting k=-—032 and Dy=4.7

% 10~ ® cm?/s, and achieved only a slightly better fit than that
shown in Fig. 5. While these values are not in close agree-
ment with the experimental values found in Ref. 14: &
=—0.23 and D,=5.2X10"° cm?/s, the fact that the variable
diffusivity results are quite close to the constant diffusivity
results establishes the main point of this analysis, namely,
that a single, average diffusivity may in certain cases ad-
equately model the behavior of a concentration-dependent
diffusivity.
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Comment on “A check of Prigogine’s theorem of minimum entropy
production in a rod in a nonequilibrium stationary state’ by Irena
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962-965 (2000) ]
Peter Palffy-Muhoray®

Liquid Crystal Institute, Kent State University, P.O. Box 5190, Kent, Ohio 44242-0001
(Received 10 October 2000; accepted 26 February 2001)

[DOLI: 10.1119/1.1371916]

In this article, the authors assert that the experimentally
observed linear dependence of temperature on position in a
rod whose ends are in contact with a hot and a cold thermal
reservoir is a demonstration of Prigogine’s theorem' of mini-
mum entropy production. An implicit claim of the article is
that there exists an established and verifiable principle of
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minimum entropy production, i.e., ‘‘Prigogine’s theorem,”’
and the explicit claim is that this principle is verified by the
experimental results presented in the article. Both of these
claims are questionable. First, stationary states can be shown
to correspond to minimum entropy production only when the
Onsager coefficients are constant. This is seldom the case in
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practice, and it is certainly not true in the case of heat con-
duction. Second, the data presented in the paper merely dem-
onstrate that entropy production is a nonincreasing function
of time. The observed linear dependence of temperature on
position clearly does not correspond to minimum entropy
production.

Following the authors, we consider a rod of length L, par-
allel to the x axis, with one end, at x=0, in contact with a hot
reservoir at temperature 7', and the other end, at x=L, in
contact with a cold reservoir at temperature 7.. The heat
current is

1
T(x )) W
where T'(x) is the temperature of the rod, L,,= kT?(x) is an
Onsager coefficient, and « is the temperature independent
thermal conductivity. The entropy production per volume as-
sociated with heat flow can be written as the product of the
generalized force V(1/T) and the conjugate flux J; the en-
tropy production per area is

L 1 L g [dT(x) 2
P:JOJ.V(T(X))dx:fo Tz(x)< dx

This expression is what the authors call the total entropy
production in their paper.

It has been verified experimentally that Fourier’s law
holds, that is, that

JLV(

dx. 2)

J=kVT(x). (3)
In the steady state, V-J=0 and it follows that
o72T(x)
) 4)

The solution to Eq. (4), which satisfies Fourier’s law, is
X
TF(x)zTh_(Th_Tc)Z’ 5)

in agreement with the authors’ experimental observations.
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The entropy production is an extremum when the first
variation with respect to the temperature field vanishes, that
s, when

aT(x)\? T (x) 6
ox ax* ©)

This clearly differs from Eq. (4). The solution of Eq. (6),
which minimizes entropy production, is

=T(x)

Ty(x)=T L lh] 7
M(x) —4h exp L n T ( )
This exponential dependence of temperature on distance, to
our knowledge, has not been observed.

The entropy production for the temperature field 7T p(x)

which is observed is simply

[tk [dTp(x)
PF_LT,%@)( dx )

while for the field 7,(x) which minimizes entropy produc-
tion it is

(k[ 9Ty(x) 2 k([ T,
PM‘foT%w(x)( x )d" L(“‘TT)' ©

It is straightforward to show that Pr>P,, for all T,>T, .

In summary, the steady state observed by the authors (and
by many others), in which the temperature varies linearly
with distance, is not the state of minimum entropy produc-
tion. The linear dependence of temperature on distance,
which is in agreement with the well-established Fourier’s
law of heat conduction, in fact indicates that Prigogine’s
““theorem’” of minimum entropy production, at least in the
case of thermal conduction with temperature independent
thermal conductivity, does not hold.

YElectronic mail: mpalffy @cpip.kent.edu

'D. Kondepudi and 1. Prigogine, Modern Thermodynamics (Wiley, New
York, 1998).

2S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics (Dover,
New York, 1984).

Notes and Discussions 826



